天天影视综合久久|制服丝袜在线精品|av大片无码专区|狠狠爱丁香色五月|高潮舒服亚洲国产|日韩精品一区三区|天天干视频爱爱视频毛片|av导航在线大全|日韩人妻一级毛片|性调教视频网站入口

排列組合方法

時間:2025-10-24 14:35:57 好文 我要投稿
  • 相關推薦

排列組合方法

排列組合方法1

 一、排列組合部分是中學數(shù)學中的難點之一,原因在于

  (1)從千差萬別的實際問題中抽象出幾種特定的數(shù)學模型,需要較強的抽象思維能力;

  (2)限制條件有時比較隱晦,需要我們對問題中的關鍵性詞(特別是邏輯關聯(lián)詞和量詞)準確理解;

  (3)計算手段簡單,與舊知識聯(lián)系少,但選擇正確合理的計算方案時需要的思維量較大;

  (4)計算方案是否正確,往往不可用直觀方法來檢驗,要求我們搞清概念、原理,并具有較強的分析能力。

  二、兩個基本計數(shù)原理及應用

  (1)加法原理和分類計數(shù)法

  1.加法原理

  2.加法原理的集合形式

  3.分類的要求

  每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬于某一類(即分類不漏)

  (2)乘法原理和分步計數(shù)法

  1.乘法原理

  2.合理分步的要求

  任何一步的一種方法都不能完成此任務,必須且只須連續(xù)完成這n步才能完成此任務;各步計數(shù)相互獨立;只要有一步中所采取的方法不同,則對應的完成此事的方法也不同

  [例題分析]排列組合思維方法選講

  1.首先明確任務的意義

  例1.從1、2、3、……、20這二十個數(shù)中任取三個不同的數(shù)組成等差數(shù)列,這樣的不同等差數(shù)列有________個。

  分析:首先要把復雜的生活背景或其它數(shù)學背景轉(zhuǎn)化為一個明確的排列組合問題。

  設a,b,c成等差,∴ 2b=a+c,可知b由a,c決定,又∵ 2b是偶數(shù),∴ a,c同奇或同偶,即:從1,3,5,……,19或2,4,6,8,……,20這十個數(shù)中選出兩個數(shù)進行排列,由此就可確定等差數(shù)列,因而本題為2=180。

  例2.某城市有4條東西街道和6條南北的街道,街道之間的間距相同,如圖。若規(guī)定只能向東或向北兩個方向沿圖中路線前進,則從M到N有多少種不同的走法?

  分析:對實際背景的分析可以逐層深入

 。ㄒ唬⿵腗到N必須向上走三步,向右走五步,共走八步。

  (二)每一步是向上還是向右,決定了不同的走法。

 。ㄈ┦聦嵣,當把向上的步驟決定后,剩下的步驟只能向右。

  從而,任務可敘述為:從八個步驟中選出哪三步是向上走,就可以確定走法數(shù),∴本題答案為:=56。

  2.注意加法原理與乘法原理的特點,分析是分類還是分步,是排列還是組合

  例3.在一塊并排的10壟田地中,選擇二壟分別種植A,B兩種作物,每種種植一壟,為有利于作物生長,要求A,B兩種作物的間隔不少于6壟,不同的選法共有______種。

  分析:條件中“要求A、B兩種作物的間隔不少于6壟”這個條件不容易用一個包含排列數(shù),組合數(shù)的式子表示,因而采取分類的方法。

  第一類:A在第一壟,B有3種選擇;

  第二類:A在第二壟,B有2種選擇;

  第三類:A在第三壟,B有一種選擇,同理A、B位置互換,共12種。

  例4.從6雙不同顏色的手套中任取4只,其中恰好有一雙同色的取法有________。

  (A)240 (B)180 (C)120 (D)60

  分析:顯然本題應分步解決。

 。ㄒ唬⿵6雙中選出一雙同色的手套,有種方法;

 。ǘ⿵氖O碌氖皇痔字腥芜x一只,有種方法。

 。ㄈ⿵某八婕暗膬呻p手套之外的八只手套中任選一只,有種方法;

  (四)由于選取與順序無關,因而(二)(三)中的選法重復一次,因而共240種。

  例5.身高互不相同的6個人排成2橫行3縱列,在第一行的每一個人都比他同列的身后的人個子矮,則所有不同的排法種數(shù)為_______。

  分析:每一縱列中的兩人只要選定,則他們只有一種站位方法,因而每一縱列的排隊方法只與人的選法有關系,共有三縱列,從而有=90種。

  例6.在11名工人中,有5人只能當鉗工,4人只能當車工,另外2人能當鉗工也能當車工,F(xiàn)從11人中選出4人當鉗工,4人當車工,問共有多少種不同的選法?

  分析:采用加法原理首先要做到分類不重不漏,如何做到這一點?分類的標準必須前后統(tǒng)一。

  以兩個全能的工人為分類的對象,考慮以他們當中有幾個去當鉗工為分類標準。

  第一類:這兩個人都去當鉗工,有種;

  第二類:這兩人有一個去當鉗工,有種;

  第三類:這兩人都不去當鉗工,有種。

  因而共有185種。

  例7.現(xiàn)有印著0,l,3,5,7,9的六張卡片,如果允許9可以作6用,那么從中任意抽出三張可以組成多少個不同的三位數(shù)?

  分析:有同學認為只要把0,l,3,5,7,9的排法數(shù)乘以2即為所求,但實際上抽出的三個數(shù)中有9的話才可能用6替換,因而必須分類。

  抽出的三數(shù)含0,含9,有種方法;

  抽出的三數(shù)含0不含9,有種方法;

  抽出的三數(shù)含9不含0,有種方法;

  抽出的三數(shù)不含9也不含0,有種方法。

  又因為數(shù)字9可以當6用,因此共有2×(+)++=144種方法。

  例8.停車場劃一排12個停車位置,今有8輛車需要停放,要求空車位連在一起,不同的停車方法是________種。

  分析:把空車位看成一個元素,和8輛車共九個元素排列,因而共有種停車方法。

  3.特殊元素,優(yōu)先處理;特殊位置,優(yōu)先考慮

  例9.六人站成一排,求

  (1)甲不在排頭,乙不在排尾的排列數(shù)

  (2)甲不在排頭,乙不在排尾,且甲乙不相鄰的排法數(shù)

  分析:(1)先考慮排頭,排尾,但這兩個要求相互有影響,因而考慮分類。

  第一類:乙在排頭,有種站法。

  第二類:乙不在排頭,當然他也不能在排尾,有種站法,共+種站法。

 。2)第一類:甲在排尾,乙在排頭,有種方法。

  第二類:甲在排尾,乙不在排頭,有種方法。

  第三類:乙在排頭,甲不在排頭,有種方法。

  第四類:甲不在排尾,乙不在排頭,有種方法。

  共+2+=312種。

  例10.對某件產(chǎn)品的6件不同正品和4件不同次品進行一一測試,至區(qū)分出所有次品為止。若所有次品恰好在第五次測試時被全部發(fā)現(xiàn),則這樣的測試方法有多少種可能?

  分析:本題意指第五次測試的產(chǎn)品一定是次品,并且是最后一個次品,因而第五次測試應算是特殊位置了,分步完成。

  第一步:第五次測試的有種可能;

  第二步:前四次有一件正品有中可能。

  第三步:前四次有種可能。

  ∴共有種可能。

  4.捆綁與插空

  例11. 8人排成一隊

  (1)甲乙必須相鄰(2)甲乙不相鄰

  (3)甲乙必須相鄰且與丙不相鄰(4)甲乙必須相鄰,丙丁必須相鄰

  (5)甲乙不相鄰,丙丁不相鄰

  分析:(1)有種方法。

 。2)有種方法。

 。3)有種方法。

  (4)有種方法。

 。5)本題不能用插空法,不能連續(xù)進行插空。

  用間接解法:全排列-甲乙相鄰-丙丁相鄰+甲乙相鄰且丙丁相鄰,共--+=23040種方法。

  例12.某人射擊8槍,命中4槍,恰好有三槍連續(xù)命中,有多少種不同的情況?

  分析:∵連續(xù)命中的三槍與單獨命中的一槍不能相鄰,因而這是一個插空問題。另外沒有命中的之間沒有區(qū)別,不必計數(shù)。即在四發(fā)空槍之間形成的5個空中選出2個的排列,即。

  例13.馬路上有編號為l,2,3,……,10十個路燈,為節(jié)約用電又看清路面,可以把其中的三只燈關掉,但不能同時關掉相鄰的兩只或三只,在兩端的燈也不能關掉的情況下,求滿足條件的關燈方法共有多少種?

  分析:即關掉的燈不能相鄰,也不能在兩端。又因為燈與燈之間沒有區(qū)別,因而問題為在7盞亮著的燈形成的不包含兩端的6個空中選出3個空放置熄滅的燈。

  ∴共=20種方法。

  4.間接計數(shù)法.(1)排除法

  例14.三行三列共九個點,以這些點為頂點可組成多少個三角形?

  分析:有些問題正面求解有一定困難,可以采用間接法。

  所求問題的方法數(shù)=任意三個點的組合數(shù)-共線三點的方法數(shù),∴共種。

  例15.正方體8個頂點中取出4個,可組成多少個四面體?

  分析:所求問題的方法數(shù)=任意選四點的組合數(shù)-共面四點的方法數(shù),∴共-12=70-12=58個。

  例16. l,2,3,……,9中取出兩個分別作為對數(shù)的底數(shù)和真數(shù),可組成多少個不同數(shù)值的對數(shù)?

  分析:由于底數(shù)不能為1。

 。1)當1選上時,1必為真數(shù),∴有一種情況。

 。2)當不選1時,從2--9中任取兩個分別作為底數(shù),真數(shù),共,其中l(wèi)og24=log39,log42=log93, log23=log49, log32=log94.

  因而一共有53個。

  (3)補上一個階段,轉(zhuǎn)化為熟悉的問題

  例17.六人排成一排,要求甲在乙的前面,(不一定相鄰),共有多少種不同的方法?如果要求甲乙丙按從左到右依次排列呢?

  分析:(一)實際上,甲在乙的'前面和甲在乙的后面兩種情況對稱,具有相同的排法數(shù)。因而有=360種。

  (二)先考慮六人全排列;其次甲乙丙三人實際上只能按照一種順序站位,因而前面的排法數(shù)重復了種,∴共=120種。

  例18.5男4女排成一排,要求男生必須按從高到矮的順序,共有多少種不同的方法?

  分析:首先不考慮男生的站位要求,共種;男生從左至右按從高到矮的順序,只有一種站法,因而上述站法重復了次。因而有=9×8×7×6=3024種。

  若男生從右至左按從高到矮的順序,只有一種站法,同理也有3024種,綜上,有6048種。

  例19.三個相同的紅球和兩個不同的白球排成一行,共有多少種不同的方法?

  分析:先認為三個紅球互不相同,共種方法。而由于三個紅球所占位置相同的情況下,共有變化,因而共=20種。

  5.擋板的使用

  例20.10個名額分配到八個班,每班至少一個名額,問有多少種不同的分配方法?

  分析:把10個名額看成十個元素,在這十個元素之間形成的九個空中,選出七個位置放置檔板,則每一種放置方式就相當于一種分配方式。因而共36種。

  6.注意排列組合的區(qū)別與聯(lián)系:所有的排列都可以看作是先取組合,再做全排列;同樣,組合如補充一個階段(排序)可轉(zhuǎn)化為排列問題。

  例21.從0,l,2,……,9中取出2個偶數(shù)數(shù)字,3個奇數(shù)數(shù)字,可組成多少個無重復數(shù)字的五位數(shù)?

  分析:先選后排。另外還要考慮特殊元素0的選取。

 。ㄒ唬﹥蓚選出的偶數(shù)含0,則有種。

 。ǘ﹥蓚選出的偶數(shù)字不含0,則有種。

  例22.電梯有7位乘客,在10層樓房的每一層停留,如果三位乘客從同一層出去,另外兩位在同一層出去,最后兩人各從不同的樓層出去,有多少種不同的下樓方法?

  分析:(一)先把7位乘客分成3人,2人,一人,一人四組,有種。

 。ǘ┻x擇10層中的四層下樓有種。

  ∴共有種。

  例23.用數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的四位數(shù),(1)可組成多少個不同的四位數(shù)?

  (2)可組成多少個不同的四位偶數(shù)?

  (3)可組成多少個能被3整除的四位數(shù)?

  (4)將(1)中的四位數(shù)按從小到大的順序排成一數(shù)列,問第85項是什么?

  分析:(1)有個。

 。2)分為兩類:0在末位,則有種:0不在末位,則有種。

  ∴共+種。

 。3)先把四個相加能被3整除的四個數(shù)從小到大列舉出來,即先選

  0,1,2,3

  0,1,3,5

  0,2,3,4

  0,3,4,5

  1,2,4,5

  它們排列出來的數(shù)一定可以被3整除,再排列,有:4×( )+=96種。

 。4)首位為1的有=60個。

  前兩位為20的有=12個。

  前兩位為21的有=12個。

  因而第85項是前兩位為23的最小數(shù),即為2301。

  7.分組問題

  例24. 6本不同的書

  (1)分給甲乙丙三人,每人兩本,有多少種不同的分法?

  (2)分成三堆,每堆兩本,有多少種不同的分法?

  (3)分成三堆,一堆一本,一堆兩本,一堆三本,有多少種不同的分法?

  (4)甲一本,乙兩本,丙三本,有多少種不同的分法?

  (5)分給甲乙丙三人,其中一人一本,一人兩本,第三人三本,有多少種不同的分法?

  分析:(1)有中。

  (2)即在(1)的基礎上除去順序,有種。

 。3)有種。由于這是不平均分組,因而不包含順序。

  (4)有種。同(3),原因是甲,乙,丙持有量確定。

 。5)有種。

  例25. 6人分乘兩輛不同的車,每車最多乘4人,則不同的乘車方法為_______。

  分析:(一)考慮先把6人分成2人和4人,3人和3人各兩組。

  第一類:平均分成3人一組,有種方法。

  第二類:分成2人,4人各一組,有種方法。

  (二)再考慮分別上兩輛不同的車。

  綜合(一)(二),有種。

  例26. 5名學生分配到4個不同的科技小組參加活動,每個科技小組至少有一名學生參加,則分配方法共有________種.

  分析:(一)先把5個學生分成二人,一人,一人,一人各一組。

  其中涉及到平均分成四組,有=種分組方法。

 。ǘ┰倏紤]分配到四個不同的科技小組,有種,由(一)(二)可知,共=240種。

排列組合方法2

  1.元素分析法

  【例】求7人站一隊,甲必須站在當中的不同站法。

  【解析】要求甲必須站在當中,因此只需對其它6人全排列即可,不同的站法共有幾種。

  2.位置分析法

  【例】求7人站一隊,甲、乙都不能站在兩端的不同站法。

  【解析】先站在兩端的位置有幾種站法,再站其它位置有幾種站法,因此所有不同的站法共有幾種站法。

  3.間接法

  【例】求7人站一隊,甲、乙不都站兩端的不同站法。

  【解析】考慮對立事件為甲乙都站在兩端,共有幾種站法;7人站成一隊所有的'站法共幾種,所以甲乙不都站兩端的不同站法共幾種。

  4.捆綁法

  【例】求7人站一隊,甲、乙、丙三人都相鄰的不同站法。

  【解析】先將甲、乙、丙看成一個人,即相當于5個人站成一隊,有幾種站法,再對這三個人全排列即得所有的不同站法共幾種。

  5.插空法

  【例】求7人站一隊,甲、乙兩人不相鄰的不同站法。

  【解析】先將其它五人全排列,然后將甲、乙兩人插入所產(chǎn)生的6個空中即可,共幾種不同的站法。

  6.留出空位法

  【例】求7人站一隊,甲在乙前,乙在丙前的不同站法。

  【解析】由于甲、乙、丙三人的順序一定,因此只要其余4人站好,這7個人就站好了,不同的站法共有幾種。

  7.單排法

  【例】求9個人站三隊,每排3人的不同站法。

  【解析】由于對人和對位置都無任何的要求,因此,相當于9個人站成一排,不同的站法顯然共有幾種。

排列組合方法3

  1.特殊定位法

  排列組合問題中,有些元素有特殊的要求,如甲必須入選或甲必須排第一位;或者有些位置有特殊的元素要求,如第一位只能站甲或乙。此時,應該優(yōu)先考慮特殊元素或者特殊位置,確定它們的選法。

  2.反面考慮法

  有些題目所給的特殊條件較多或者較為復雜,直接考慮需要分許多類,而它的反面卻往往只有一種或者兩種情況,此時我們先求出反面的情況,然后將總情況數(shù)減去反面情況數(shù)就可以了。

  例題: 從6名男生、5名女生中任選4人參加競賽,要求男女至少各1名,有多少種不同選法?

  A.240 B.310 C.720 D.1080

  4.歸一法

  排列問題中,有些元素之間的排列順序“已經(jīng)固定”,這時候可以先將這些元素與其他元素進行排列,再除以這些元素的全排列數(shù),即得到滿足條件的排列數(shù)。

  例題: 一張節(jié)目表上原有3個節(jié)目,如果保持這3個節(jié)目的相對順序不變,再添進去2個新節(jié)目,有多少種安排方法?

  A.20 B.12 C.6 D.4

  解析:此題答案為A。

  方法一:“添進去2個新節(jié)目”后,共有5個節(jié)目,因此,此題相當于“安排5個節(jié)目,其中3個節(jié)目相對順序確定,有多少種方法?”

  由于“3個節(jié)目相對順序確定”,可以直接采用歸一法。

  方法二:也可以用插空法,即將2個新節(jié)目插入原來3個節(jié)目和兩端之間形成的空處。需要注意的.是,由于插入的2個新節(jié)目可以相鄰,所以應逐一插入。

  將第一個新節(jié)目插入原有3個節(jié)目和兩端之間形成的4個空處,有4種選擇;這時,4個節(jié)目形成5個空,再將第二個新節(jié)目插入,有5種選擇。

  根據(jù)乘法原理,安排方法共有4×5=20種。

【排列組合方法】相關文章:

識字方法09-08

防曬的方法09-28

激勵方法03-11

描寫的方法07-07

孩子流鼻血的原因及處理方法預防方法07-05

正確的唱歌方法03-25

練聲的方法03-27

科學的長高方法03-29

男人解壓的方法04-20